首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   8篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   3篇
  2010年   5篇
  2009年   8篇
  2008年   3篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2003年   6篇
  2002年   1篇
  2001年   5篇
  2000年   4篇
  1999年   8篇
  1998年   3篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   5篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   8篇
  1980年   2篇
  1979年   11篇
  1978年   12篇
  1977年   4篇
  1976年   2篇
  1975年   1篇
  1974年   5篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1969年   3篇
  1967年   1篇
排序方式: 共有160条查询结果,搜索用时 46 毫秒
91.
A method is described for measuring bioreduction of hydroxyethyl disulfide (HEDS) or alpha-lipoate by human A549 lung, MCF7 mammary, and DU145 prostate carcinomas as well as rodent tumor cells in vitro. Reduction of HEDS or alpha-lipoate was measured by removing aliquots of the glucose-containing media and measuring the reduced thiol with DTNB (Ellman's reagent). Addition of DTNB to cells followed by disulfide addition directly measures the formation of newly reduced thiol. A549 cells exhibit the highest capacity to reduce alpha-lipoate, while Q7 rat hepatoma cells show the highest rate of HEDS reduction. Millimolar quantities of reduced thiol are produced for both substrates. Oxidized dithiothreitol and cystamine were reduced to a lesser degree. DTNB, glutathione disulfide, and cystine were only marginally reduced by the cell cultures. Glucose-6-phosphate deficient CHO cells (E89) do not reduce alpha-lipoate and reduce HEDS at a much slower rate compared to wild-type CHO-K1 cells. Depletion of glutathione prevents the reduction of HEDS. The depletion of glutathione inhibited reduction of alpha-lipoate by 25% and HEDS by 50% in A549 cells, while GSH depletion did not inhibit alpha-lipoate reduction in Q7 cells but completely blocked HEDS reduction. These data suggest that the relative participation of the thioltransferase (glutaredoxin) and thioredoxin systems in overall cellular disulfide reduction is cell line specific. The effects of various inhibitors of the thiol-disulfide oxidoreductase enzymes (1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), arsenite, and phenylarsine oxide) support this conclusion.  相似文献   
92.
Oxidative stress broadly impacts cells, initiating regulatory pathways as well as apoptosis and necrosis. A key molecular event is protein S-glutathionylation, and thioltransferase (glutaredoxin) is a specific and efficient catalyst of protein-SSG reduction. In this study 30-min exposure of H9 and Jurkat cells to cadmium inhibited intracellular protein-SSG reduction, and this correlated with inhibition of the thioltransferase system, consistent with thioltransferase being the primary intracellular catalyst of deglutathionylation. The thioredoxin system contributed very little to total deglutathionylase activity. Thioltransferase and GSSG reductase in situ displayed similar dose-response curves (50% inhibition near 10 micrometer cadmium in extracellular buffer). Acute cadmium exposure also initiated apoptosis, with H9 cells being more sensitive than Jurkat. Moreover, transfection with antisense thioltransferase cDNA was incompatible with cell survival. Collectively, these data suggest that thioltransferase has a vital role in sulfhydryl homeostasis and cell survival. In separate experiments, cadmium inhibited the isolated component enzymes of the thioltransferase and thioredoxin systems, consistent with the vicinal dithiol nature of their active sites: thioltransferase (IC(50) approximately 1 micrometer), GSSG reductase (IC(50) approximately 1 micrometer), thioredoxin (IC(50) approximately 8 micrometer), thioredoxin reductase (IC(50) approximately 0.2 micrometer). Disruption of the vicinal dithiol on thioltransferase (via oxidation to C22-SS-C25; or C25S mutation) protected against cadmium, consistent with a dithiol chelation mechanism of inactivation.  相似文献   
93.
In prokaryotes, lateral gene transfer across chromosomal lineages may be mediated by plasmids, phages, transposable elements, and other accessory DNA elements. However, the importance of such transfer and the evolutionary forces that may restrict gene exchange remain largely unexplored in native settings. In this study, tests of phylogenetic congruence are employed to explore the range of horizontal transfer of symbiotic (sym) loci among distinct chromosomal lineages of native rhizobia, the nitrogen-fixing symbiont of legumes. Rhizobial strains isolated from nodules of several host plant genera were sequenced at three loci: symbiotic nodulation genes (nodB and nodC), the chromosomal housekeeping locus glutamine synthetase II (GSII), and a portion of the 16S rRNA gene. Molecular phylogenetic analysis shows that each locus generally subdivides strains into the same major groups, which correspond to the genera Rhizobium, Sinorhizobium, and Mesorhizobium. This broad phylogenetic congruence indicates a lack of lateral transfer across major chromosomal subdivisions, and it contrasts with previous studies of agricultural populations showing broad transfer of sym loci across divergent chromosomal lineages. A general correspondence of the three rhizobial genera with major legume groups suggests that host plant associations may be important in the differentiation of rhizobial nod and chromosomal loci and may restrict lateral transfer among strains. The second major result is a significant incongruence of nod and GSII phylogenies within rhizobial subdivisions, which strongly suggests horizontal transfer of nod genes among congenerics. This combined evidence for lateral gene transfer within, but not between, genetic subdivisions supports the view that rhizobial genera are "reproductively isolated" and diverge independently. Differences across rhizobial genera in the specificity of host associations imply that the evolutionary dynamics of the symbiosis vary considerably across lineages in native settings.   相似文献   
94.
95.
Abstract Bacteria are key organisms in the processing of dissolved organic carbon (DOC) in aquatic ecosystems. Their growth depends on both organic substrates and inorganic nutrients. The importance of allochthonous DOC, usually highly colored, as bacterial substrate can be modified by photobleaching. In this study, we examined how colored DOC (CDOC) photobleaching, and phosphorus (P) and nitrogen (N) availability, affect bacterial growth. Five experiments were conducted, manipulating nutrients (P and N) and sunlight exposure. In almost every case, nutrient additions had a significant, positive effect on bacterial abundance, production, and growth efficiency. Sunlight exposure (CDOC photobleaching) had a significant, positive effect on bacterial abundance and growth efficiency. We also found a significant, positive interaction between these two factors. Thus, bacterial use of CDOC was accelerated under sunlight exposure and enhanced P and N concentrations. In addition, the accumulation of cells in sunlight treatments was dependent on nutrient availability. More photobleached substrate was converted into bacterial cells in P- and N-enriched treatments. These results suggest nutrient availability may affect the biologically-mediated fate (new biomass vs respiration) of CDOC.  相似文献   
96.
97.
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号